A Novel Control Design for Rigid-Link Electrically-Driven Robot Manipulator Using RISE Feedback and Bees Algorithm

نویسندگان

  • Behnaz Hadi
  • Alireza Khosravi
  • Abolfazl Ranjbar
  • Pouria Sarhadi
چکیده

Abstract n this paper, a Robust Integral of the Sign Error (RISE) feedback controller is designed for a Rigid-Link Electrically Driven (RLED) robot manipulator actuated by direct current DC motor in presence of parametric uncertainties and additive disturbances. RISE feedback with implicitly learning capability is a continuous control method based on the Lyapunov stability analysis to compensate an additive bounded disturbance and linear in the parametric (LP) and non-linear in parametric (non-LP) uncertain dynamics through the use of a sufficiently large gain multiplied by an integral signum term. A proper selection of controller gains in predefined permitted areas for gains leads to reducing convergence time, control effort and improving performance. The Bees Algorithm that is a search procedure inspired by the foraging behavior of honey bees is used to tune the parameters of the controller to achieve the convergence. Simulation results of a two Rigid-Link Electrically-Driven Robot Manipulator verify performance of the designed controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Fractional-order Control of Flexible-Joint Electrically Driven Robots

This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...

متن کامل

Robust Fractional-order Control of Flexible-Joint Electrically Driven Robots

This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...

متن کامل

Task-space Control of Electrically Driven Robots

Actuators of robot operate in the joint-space while the end-effect or of robot is controlled in the task-space. Therefore, designing a control system for a robotic system in the task-space requires the jacobian matrix information for transforming joint-space to task-space, which suffers from uncertainties. This paper deals with the robust task-space control of electrically driven robot manipula...

متن کامل

Robust Control of Electrically Driven Robots in the Task Space

In this paper, a task-space controller for electrically driven robot manipulators is developed using a robust control algorithm. The controller is designed using voltage control strategy. Based on the nominal model of the robotic arm, the desired signals for motor currents are calculated and then the voltage control law is proposed based on the current errors and motor nominal electrical model....

متن کامل

Boundary Feedback Stabilization of a Nonlinear Flexible Gantry Manipulator Using Disturbance Observer

This paper aims to develop a boundary control solution for a single-link gantry robot manipulator with one axis of rotation. The control procedure is considered with link’s transverse vibrations while system undergoes rigid body nonlinear large rotation and translation. Initially, based on Hamilton principle, governing equations of hybrid motions as a set of partial differential equations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016